Spatially-Resolved Proteomics: Rapid Quantitative Analysis of Laser Capture Microdissected Alveolar Tissue Samples
نویسندگان
چکیده
Laser capture microdissection (LCM)-enabled region-specific tissue analyses are critical to better understand complex multicellular processes. However, current proteomics workflows entail several manual sample preparation steps and are challenged by the microscopic mass-limited samples generated by LCM, impacting measurement robustness, quantification and throughput. Here, we coupled LCM with a proteomics workflow that provides fully automated analysis of proteomes from microdissected tissues. Benchmarking against the current state-of-the-art in ultrasensitive global proteomics (FASP workflow), our approach demonstrated significant improvements in quantification (~2-fold lower variance) and throughput (>5 times faster). Using our approach we for the first time characterized, to a depth of >3,400 proteins, the ontogeny of protein changes during normal lung development in microdissected alveolar tissue containing only 4,000 cells. Our analysis revealed seven defined modules of coordinated transcription factor-signaling molecule expression patterns, suggesting a complex network of temporal regulatory control directs normal lung development with epigenetic regulation fine-tuning pre-natal developmental processes.
منابع مشابه
Application of laser capture microdissection and proteomics in colon cancer.
AIMS Laser capture microdissection is a recent development that enables the isolation of specific cell types for subsequent molecular analysis. This study describes a method for obtaining proteome information from laser capture microdissected tissue using colon cancer as a model. METHODS Laser capture microdissection was performed on toluidine blue stained frozen sections of colon cancer. Tum...
متن کاملLaser capture microdissection and colorectal cancer proteomics.
The ability to define protein profiles of normal and diseased cells is important in understanding cell function. Laser capture microdissection permits the isolation of specific cell types for subsequent molecular analysis. In this study we have established conditions for obtaining proteomic information from laser capture microdissected colorectal cancer cells. Laser capture microdissection was ...
متن کاملDirect analysis of laser capture microdissected endometrial carcinoma and epithelium by matrix-assisted laser desorption/ionization mass spectrometry.
Direct analysis of laser capture microdissected malignant and normal endometrial epithelium using matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry (MS) was able to detect a number of proteins that are overexpressed in malignant epithelial cells. A total of 16 physiologic and malignant endometrial samples were laser capture microdissected, including four proli...
متن کاملAccurate qualitative and quantitative proteomic analysis of clinical hepatocellular carcinoma using laser capture microdissection coupled with isotope-coded affinity tag and two-dimensional liquid chromatography mass spectrometry.
Laser capture microdissection (LCM) is a powerful tool that enables the isolation of specific cell types from tissue sections, overcoming the problem of tissue heterogeneity and contamination. This study combined the LCM with isotope-coded affinity tag (ICAT) technology and two-dimensional liquid chromatography to investigate the qualitative and quantitative proteomes of hepatocellular carcinom...
متن کاملLaser capture sampling and analytical issues in proteomics.
Proteomics holds the promise of evaluating global changes in protein expression and post-translational modification in response to environmental stimuli. However, difficulties in achieving cellular anatomic resolution and extracting specific types of proteins from cells have limited the efficacy of these techniques. Laser capture microdissection has provided a solution to the problem of anatomi...
متن کامل